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Objectives: The devastating effect of traumatic brain injury is exac-
erbated by an acute secondary neuroinflammatory response, clini-
cally manifest as elevated intracranial pressure due to cerebral 
edema. The treatment effect of cell-based therapies in the acute 
post–traumatic brain injury period has not been clinically studied 
although preclinical data demonstrate that bone marrow–derived 
mononuclear cell infusion down-regulates the inflammatory 
response. Our study evaluates whether pediatric traumatic brain 
injury patients receiving IV autologous bone marrow–derived 
mononuclear cells within 48 hours of injury experienced a reduc-
tion in therapeutic intensity directed toward managing elevated 
intracranial pressure relative to matched controls.

Design: The study was a retrospective cohort design comparing 
pediatric patients in a phase I clinical trial treated with IV autolo-
gous bone marrow–derived mononuclear cells (n = 10) to a con-
trol group of age- and severity-matched children (n = 19).
Setting: The study setting was at Children’s Memorial Hermann 
Hospital, an American College of Surgeons Level 1 Pediatric 
Trauma Center and teaching hospital for the University of Texas 
Health Science Center at Houston from 2000 to 2008.
Patients: Study patients were 5–14 years with postresuscitation 
Glasgow Coma Scale scores of 5–8.
Interventions: The treatment group received 6 million autolo-
gous bone marrow–derived mononuclear cells/kg body weight IV 
within 48 hours of injury. The control group was treated in an iden-
tical fashion, per standard of care, guided by our traumatic brain 
injury management protocol, derived from American Association 
of Neurological Surgeons guidelines.
Measurements and Main Results: The primary measure was the 
Pediatric Intensity Level of Therapy scale used to quantify treat-
ment of elevated intracranial pressure. Secondary measures 
included the Pediatric Logistic Organ Dysfunction score and days 
of intracranial pressure monitoring as a surrogate for length of 
neurointensive care. A repeated-measure mixed model with mar-
ginal linear predictions identified a significant reduction in the 
Pediatric Intensity Level of Therapy score beginning at 24 hours 
posttreatment through week 1 (p < 0.05). This divergence was 
also reflected in the Pediatric Logistic Organ Dysfunction score 
following the first week. The duration of intracranial pressure 
monitoring was 8.2 ± 1.3 days in the treated group and 15.6 ± 3.5 
days (p = 0.03) in the time-matched control group.
Conclusions: IV autologous bone marrow–derived mononuclear 
cell therapy is associated with lower treatment intensity required 
to manage intracranial pressure, associated severity of organ 
injury, and duration of neurointensive care following severe trau-
matic brain injury. This may corroborate preclinical data that autol-
ogous bone marrow–derived mononuclear cell therapy attenuates 
the effects of inflammation in the early post–traumatic brain injury 
period. (Pediatr Crit Care Med 2015; 16:245–255)
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Traumatic brain injury (TBI) continues to present a pro-
found financial and social burden to the population due 
to its associated morbidity and disability (1, 2). Despite 

improvements in prevention, severe pediatric TBI, defined 

clinically as a Glasgow Coma Score (GCS) less than 8, rates 
remain unchanged (3).

TBI causes an acute secondary neuroinflammatory 
response clinically manifest as elevated intracranial pressures 
(ICPs) from cerebral edema. The pathophysiology and man-
agement of TBI can be viewed in two stages (4). The first stage 
is treating the primary injury and the sequela of the direct 
mechanical impact and involves evacuating gross macro-
vascular bleeding, achieving hemostasis and debridement 

Table 1. Pediatric Intensity Level of Therapy Scale

Variable Score Maximum Possible Score

General—occurring at any time in 24-hr period

4

 ��� Treatment of fever (temperature of > 38.5°C) or spontaneous temperature 
of < 34.5°C

1

 ��� Sedation (e.g., narcotics, benzodiazepines: any dose) 1

 ��� Neuromuscular blockade 2

Ventilation—most frequently observed Paco2 in 24-hr period

4
 ��� Intubated/normal ventilation (Paco2 of 35.1–40 mm Hg) 1

 ��� Mild hyperventilation (Paco2 of 32–35 mm Hg) 2

 ��� Aggressive hyperventilation (Paco2 of < 32 mm Hg) 4

Osmolar therapy—total dose in 24-hr period

6

 ��� Mannitol, ≤ 1 g/kg 1

 ��� Mannitol, 1.1–2 g/kg 2

 ��� Mannitol, > 2 g/kg 3

 ��� or

 ��� Hypertonic saline (any dose or rate, regardless of serum [Na]) 3

Cerebrospinal fluid drainage—number of times in 24-hr period

3
 ��� 0–11 times 1

 ��� 12–23 times 2

 ��� ≥ 24 times or continuous 3

Barbiturates—total dose in 24-hr period

4 ��� Pentobarbital, ≤ 36 mg/kg 3

 ��� Pentobarbital, > 36 mg/kg 4

Surgery—at any time in 24-hr period

9 ��� Evacuation of hematoma 4

 ��� Decompressive craniectomy 5

Other—at any time during 24-hr period

8

 ��� Induced hypothermia

  ���  Mild (≥ 35°C to 37°C) 2

  ���  Moderate (< 35°C) 4

 ��� Lumbar drain 2

 ��� Induced hypertension (≥ 95th percentile for age) 2

Total possible score 38
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of nonviable tissue. The second and often long-term goal is 
directed toward treating the secondary effects of the initial 
impact, which involves a neuroinflammatory response exac-
erbated by the breakdown of the blood-brain barrier, result-
ing in subacute, life-threatening cerebral edema. This second 
stage classically peaks approximately 48–72 hours after the 
initial trauma (5–7). Subsequent chronic inflammation and 
cellular dysfunction manifest as chronic motor and cognitive 
disabilities.

The acute neurointensive care of TBI has unfortunately 
remained supportive and focuses on treating edema and 
escalates in intensity in a tiered fashion (8, 9). First-tier 
treatments include establishing an ICP treatment threshold, 
cerebral perfusion pressure (CPP) monitoring, sedation, 

neuromuscular blockade, cerebrospinal fluid (CSF) drain-
age, and hyperosmolar therapy with mannitol or 3% saline 
(10). Second-tier recommendations include hyperventila-
tion, barbiturates, hypothermia, and decompressive crani-
otomy (11–24). In the pediatric population, the Pediatric 
Intensity Level of Therapy (PILOT) scoring system for treat-
ment intensity directed toward ICP management has been 
developed and validated with higher scores assigned to sec-
ond-tier management strategies such as hyperventilation, 
barbiturates, hypothermia, and decompressive craniectomy 
(25–28) (Table 1).

ICP is monitored and used either as a therapeutic target  
(< 25 mm Hg) or as a component in a CPP strategy (CPP = 
mean arterial pressure – ICP). After excluding extra-axial 
bleeding and contusion expansion with imaging studies, the 
ICP is functionally used as a surrogate for cerebral edema. 
Cerebral edema has been categorized as vasogenic (intersti-
tial) and cytotoxic (intracellular), but both are consequences 
of the secondary brain injury that could be exacerbated by 
neuroinflammation (29–31). Sustained elevations of ICP sug-
gest ongoing secondary injury. Elevated average ICP in the 
first 48 hours of monitoring has been shown to be indepen-
dently associated with mortality (32). Despite ICP-targeted 
therapy, one third of pediatric patients with severe TBI have 
unfavorable outcomes: death, persistent vegetative state, or 
severe/moderate disability (1, 3).

Our translational research laboratory has developed a 
focused effort investigating preclinical and clinical applications 
of cell therapy (33). Bone marrow–derived mononuclear cells 
(BMMNCs) comprise a progenitor cell population that share 
the characteristics of unilobulated or round nuclei, absence of 
granules in the cytoplasm, and similar size and density which 
allows for easy isolation for therapeutic application (34) These 
cells have been shown to mobilize in response to tissue damage 
to organs such as the heart, liver, and kidneys (35–37). In 2008, 

Table 2. Clinical Trial Inclusion/Exclusion 
Criteria

Inclusion criteria

 ��� Age, 5–14 yr

 ��� Postresuscitation Glasgow Coma Score, 5–8

 ��� Injury occurring < 24 hr within enrollment

Exclusion criteria

 ��� Initial intracranial pressure > 40

 ��� Findings on head CT/MRI suggestive of prolonged 
hypoxic ischemic insult

 ��� Hemodynamic instability

 ��� Uncorrected coagulopathy at the time of harvest

 ��� Pulmonary contusions

 ��� Solid or hollow visceral injury of the abdomen/pelvis

 ��� Spinal cord injury

Table 3. Baseline Demographic/Injury Data for Phase I and Control Cohorts

Variable

Control  
2000–2006  

(n = 14 ± sem)

Control  
2006–2008  

(n = 5 ± sem)
p (2000–2006 vs 

2006–2008)

Control  
2000–2008  

(n = 19 ± sem)

Phase I  
( 2006–2008)
(n = 10 ± sem)

p (Control  
2006–2008  
vs Phase I)

p (Control  
2000–2008  
vs Phase I)

Males, % 64 (n = 9) 40 (n = 2) 0.6 60 (n = 11) 70 (n = 7) 0.3 0.7

Mean age 8.9 ± 0.7 8.6 ± 1.6 0.8 8.8 ± 0.8 8.9 ± 0.9 0.9 1.0

Injury Severity Score 29 ± 1.1 35 ± 6.6 0.03 30 ± 1.5 30 ± 1.9 0.2 0.3

Best initial Glasgow 
Coma Score

6.3 ± 0.3 6.6 ± 1.1 0.7 6.4 ± 0.4 5.8 ± 0.4 0.3 0.3

Modified Marshall 
Score

3.7 ± 0.3 3.3 ± 1.7 0.6 3.6 ± 0.3 3.7 ± 0.5 0.7 0.8

Opening pressurea 20 ± 2.7  
(n = 12)

22 ± 4.3  
(n = 5)

0.7 22 ± 2.4  
(n = 17)

21 ± 2.1  
(n = 10)

0.6 0.7

Craniectomies, % 29 (n = 4) 20 (n = 1) 0.1 26 (n = 5) 50 (n = 10) 0.1 0.4

External ventricular 
drain, %

42 (n = 5) 0 0.2 29 (n = 5) 40 (n = 4) 0.1 0.5

aTwo patients in the 2000–2006 control group did not have intracranial pressure monitors placed.
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we completed a 2-year phase 
I trial with 10 children using 
autologous BMMNCs delivered 
IV within 48 hours of injury 
and found this approach to be 
safe, although a secondary find-
ing with underlying mechanis-
tic potential was preservation of 
selected brain structures on fol-
low-up MRI (38). Concurrent 
preclinical rodent experiments 
demonstrated that cell-based 
therapies could reduce the 
amount of locoregional brain 
edema in the acute postinjury 
period, suggesting that therapy 
allows for preservation or recov-
ery of the blood-brain barrier 
(39–41). We thus questioned 
whether or not this preclini-
cal acute treatment-associated 
effect could be retrospectively 
demonstrated in our human 
trials. In this study, we sought to 
evaluate whether our previous 
cohort of treated pediatric TBI 
patients experienced a reduc-
tion in ICP-directed therapeutic 
intensity levels relative to time, 
age, and severity-matched con-
trol patients.

MATERIALS AND 
METHODS
This study was a retrospec-
tive cohort study using data 
obtained from a clinical trial 
conducted under Federal 
Investigational New Drug 
Application BB 12620 and was 
approved by The University of 
Texas Health Sciences Center 
at Houston Committee for the 
Protection of Human Subjects 
and approved by the Children’s 
Memorial Hermann Office of 
Research.

All 10 patients who were 
enrolled in our phase I trial 
(May 2006–October 2008) 
were included in this cohort 
study as the treatment group. 
These patients were reported 
in a previous publication (38). 

Figure 1. Pediatric Intensity Level of Therapy (PILOT) score calculated from time of admission with divergence 
seen following time of cell therapy (patients were treated within 48 hr of admission) with p < 0.001 versus both 
2006–2008 and 2000–2008 controls. Also displayed are the mean intracranial pressure (ICP) monitoring days 
with sem for each group and area under the curve (AUC) analysis where cumulative PILOT scores in each group 
of patients were summed for days 3–10 and for days 11–21.
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A control group of 19 patients was formed by applying the 
same inclusion/exclusion criteria (Table 2) to 156 consecutive 
severe TBI children (defined as GCS ≤ 8) who were admitted 
to our same institution from the years 2000 to 2008. Five of 
the 19 patients who were admitted during the phase I trial 
period were not enrolled. Three of these patients had declined 
to be included in the trial and two were not enrolled because 
their treatment window would have conflicted with the safety 
monitoring review period for one of the enrolled phase I 
trial patients. Age, sex, Injury Severity Score, best initial GCS, 
Modified Marshall Score, and opening ICP were used for base-
line characteristics (Table 3). Opening pressure data were only 
available for patients from 2006 to 2008. Two-tailed t tests and 
Fisher exact tests were used to compare the two groups at base-
line. Means were reported with sem.

Bone marrow at 3–5 mL/kg body weight was harvested asep-
tically from either the posterior iliac bone or the anterior iliac 
crests while under both local and systemic anesthesia and with 

continuous physiologic monitor-
ing. Once collected, the marrow 
was processed by the Center for 
Cell and Gene Therapy. In brief, 
the filtered mononuclear cell 
fraction was isolated using Ficoll-
Paque PLUS (GE Healthcare 
Bio-Sciences, Piscataway, NJ) 
density gradient separation. The 
mononuclear cells were washed 
with human serum albumin in 
normal saline and adjusted to 
the appropriate concentration of 
6 × 106 BMMNC/kg at a volume 
of 1 cc/kg of body weight. Prior 
to release, the cells were tested for 
viability and presence of endo-
toxin. Quality control was con-
ducted for bacterial and fungal 
cultures, presence of mycoplasma 
via polymerase chain reaction as 
well as progenitor cell colony for-
mation, and flow cytometry for 
cell characteristics. The product 
was infused IV using catheters no 
smaller than 20 gauge.

Treatment Intensity—PILOT 
Score
The primary measure of this 
study was the intensity of 
treatment required to counter 
elevated ICP due to the neuroin-
flammatory response to injury. 
The PILOT score was calculated 
at 24-hour intervals starting 
from the time of admission, by 
combining subtotals from seven 

different treatment modalities (Table 1). A repeated-measure 
mixed model with marginal linear predictions was used to 
identify if there were any differences between treatment and 
control groups from the time of admission through 21 days 
as well as from hospital day 3 to 10 (24 hr after infusion of cell 
product for the treatment group). An area under the curve 
analysis was also conducted to determine if treated patients 
had less intense cumulative therapy over the first and or second 
week compared to controls. The PILOT score does not account 
for different degrees of daily hypertonic saline administration, 
thus peak serum sodium levels were also compared between 
groups.

Pediatric Logistic Organ Dysfunction Score
The Pediatric Logistic Organ Dysfunction (PELOD) score is 
a prospectively validated outcomes measure of the degree of 
multiple organ dysfunction in pediatric patients (42–47). The 
PELOD score was calculated daily from 12 variables derived 

Figure 2. Maximum sodium levels were highest in the 2006–2008 control group, which were significantly higher 
than the 2006–2008 phase I group (p < 0.05). HTN = hypertension, HTS = hypertonic saline.
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from six organ system categories: neurological, cardiovascular, 
renal, respiratory, hematological, and hepatic. For each vari-
able, the most abnormal daily variable was used. A separate 
comparison between groups was conducted for the GCS, a 
major component of the PELOD score for TBI patients.

ICP Days
Our study was designed to study the effects of cell-based ther-
apy on TBI, and thus, the inclusion and exclusion criteria were 
designed to allow enrollment of patients without major organ 
system dysfunctions at the time of admission. Rather than 
using the length of stay as an indicator of short-term outcome, 
we used ICP monitoring days as a more specific surrogate of 
duration of neurointensive treatment required. In the control 
group, one patient was excluded from ICP monitor days due to 
death, one patient was managed without invasive monitoring, 
and one patient underwent craniectomy and the neurosurgeon 
elected to not leave a pressure monitor. In the treated group, 
one patient developed hydrocephalus and underwent multiple 
ventriculostomies and creation of a ventriculoperitoneal shunt. 
All groups demonstrated normal distribution via the Shapiro-
Wilk and D’Agostino-Pearson omnibus normality tests.

RESULTS
There was no statistically significant difference in baseline 
characteristics between the treated phase I group and the con-
trol groups (Table  3). In the 21 days following injury, there 
were no deaths in the treatment group and one death in the 
control group.

Treatment Intensity (PILOT)
The treated group experienced a statistically significant reduc-
tion in PILOT scores beginning at 24 hours posttreatment 
through week 1 (p < 0.05) (Fig.  1). The divergence of the 
PILOT scores began approximately 48 hours from the time of 
admission, which corresponded to the period in which treated 
patients received autologous bone marrow mononuclear cells. 
Following cell therapy, the divergence in the PILOT score trac-
ing was maintained, with the treatment group following a near 
linear decline through 21 days. In the first week, the control 
group treatment intensity remained elevated while the treated 
patients experienced a de-escalation in treatment intensity fol-
lowing cell therapy. The control group required equal or esca-
lated therapy and did not approach the treatment group scores 
until after 2 weeks post injury. All phase I patients (n  =  10) 

received hypertonic therapy and 
reached a peak serum sodium 
concentration of 160 ± 3 mEq/L. 
This was not statistically signifi-
cant when compared to nine of 
19 patients in the control group 
that underwent hypertonic 
saline therapy (163 ± 3.0 mEq/L; 
p = 0.5). However, there was 
statistical difference between 
the time-matched subgroup of 
2006–2008 at 170 ± 3 mEq/L 
and the phase I treated group 
(p = 0.02) (Fig. 2).

Organ Dysfunction 
(PELOD)
The divergence seen in the 
PILOT score was also reflected 
in the PELOD score (Fig.  3) 
but appeared to occur at 1 week 
compared to the first 24–48 
hours seen in the PILOT score. 
GCS also began to improve 
beginning at 1 week in the 
treated group (Fig. 4).

ICP Monitoring
Maximum ICP levels per day 
begin to decrease approximately 
48 hours after treatment in 
phase I patients (Fig.  5). The 
mean duration of ICP moni-
toring was 8.2 ± 1.3 days in 

Figure 3. Pediatric Level of Organ Dysfunction (PELOD) score calculated from time of admission with 
divergence seen after 1 wk with the phase I 2006–2008 group versus both 2006–2008 and 2000–2008 
controls (p < 0.001).
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the treated group, which was significantly less compared to 
15.6 ± 3.5 days in the time-matched control group (p = 0.03), 
but not significantly less when compared to the entire control 
group 11 ± 1.8 days (p = 0.2).

DISCUSSION
Our retrospective cohort study suggests that IV infusion of 
BMMNCs is associated with lower treatment intensity levels 
in pediatric patients with severe TBI in the early postinjury 
period. The divergence of clinical status as defined by the 
PILOT for treatment intensity and PELOD score for organ 
dysfunction occurs at distinct time periods. For the PILOT 
score, the point of divergence, which occurs at the time of 
autologous bone marrow mononuclear cell infusion, sug-
gests that BMMNCs may be exerting an immediate down-
regulatory effect on factors contributing to cerebral edema. 
Furthermore, the divergence is sustained, suggesting that 
the cellular therapy exerts a continued primary or propaga-
tive effect that is durable up to 2 weeks. Together with the 
duration of ICP monitoring, the PELOD data suggest that 
the BMMNCs reduce organ dysfunction past the time of 

neurointensive care and that 
the sustained elevated PELOD 
scores in the control group 
were more attributed to sus-
tained low GCS from managing 
ICP/edema or encephalopathy 
rather than organ dysfunc-
tion such as known pulmonary 
complications associated with 
TBI (48, 49). In the BMMNC-
treated group, the GCS begin 
to improve at 1 week, the same 
time the PELOD scores begin 
to improve, suggesting that the 
GCS is an important contribu-
tor to the PELOD score.

The heterogeneity in TBI 
injury patterns makes short- 
and long-term outcome trials 
very difficult to conduct and 
interpret (28). Our retrospec-
tive study has several limita-
tions. First, this study used a 
relatively small retrospective 
cohort design. The phase I 
trial used in this study as the 
treatment group only had 10 
patients. The phase I trial was 
also not blinded. The con-
trol group included patients 
from a time period both prior 
to and during the safety trial. 
However, due to the nature of 
the phase I trial, only five of the 

19 control patients were admitted within the same period 
of the phase I trial. Although all patients in this study were 
from the same institution and selected consecutively, specific 
treatment strategies used by different clinicians from 2000 to 
2008 were not captured by our data analysis. Dean et al (50) 
reported in 2007 that neurointensivists have least agreement 
in serum osmolality thresholds for hypertonic therapy, pro-
phylactic hyperventilation, and ICP thresholds. Second, the 
injury pattern of TBI is very heterogeneous, making the ini-
tial injury severity classification difficult. Therefore, in addi-
tion to initial GCS, we also used the Modified Marshall CT 
score as well as the opening CSF/ICP to estimate the severity 
of the initial TBI in our patients (51). The transition from 
paper charting to electronic medical records also occurred 
during the study period of 2000–2008, making data gather-
ing such as opening pressure determination difficult. Data 
were not available to directly compare long-term outcome 
data between the treatment and control groups. The phase I 
trial followed up each subject to 6 months post injury.

In this study, the PILOT score was used to describe the 
intensity of treatment directed toward ICP, a surrogate mea-
sure of cerebral edema. The PILOT score has limitations, one 

Figure 4. When plotting best Glasgow Coma Score (GCS) per day, there appears to be a cell therapy–related 
improvement in GCS after 1 wk in the phase I 2006–2008 patients compared to either control group.
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of which is in hyperosmolar therapy. The goal serum sodium 
concentrations are not specified in the scoring system, so 
patients treated with hypertonic saline to achieve a serum con-
centration of 148 mEq/L would be scored the same as patients 
titrated to a serum concentration of 160 mEq/L (52–54). In 

our study, all of the 10 treatment group patients underwent 
hypertonic saline therapy and reached a serum sodium con-
centration of 160 ± 3 mEq/L. This was statistically less than 
170 ± 3 mEq/L in the 2006–2008 time-matched control sub-
group. When plotting maximum ICP per day, there appears to 

Figure 5. When plotting maximum intracranial pressure (ICP) per day, 
there appears to be a cell therapy–related decrease in maximum ICP 
values per day beginning approximately 48 hr after treatment, which 
can be seen when the phase I 2006–2008 group is compared with all 
controls (A), time-matched controls from 2006 to 2008 (B), and controls 
from 2000 to 2006 (C). EVD = external ventricular drain.
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be a cell therapy–related decrease in maximum ICP values per 
day beginning approximately 48 hours after treatment. Also 
patients in the phase I clinical trial required pentobarbital. 
These differences may be associated with a therapeutic effect 
of the cell therapy.

Although not statistically significant, the number of 
patients that received external ventricular drains (EVDs) was 
not equal across the groups. Forty-two percent of the control 
patients from 2000 to 2006 had EVDs placed, which if used 
for CSF drainage may increase the PILOT score by up to 3 
points. None of the control patients from 2006 to 2008 under-
went EVD placement versus 42% in the 2000–2006 control 
group (p = 0.4). Forty percent of the phase I patients received 
EVDs (p = 0.68 vs 2000–2008). Decompressive craniectomy 
can alter the course of neurointensive care. Although fewer 
patients underwent decompressive craniectomy in the control 
group (26%) compared to treatment group (50%), this was 
not statistically significant with a Fisher exact statistic p value 
of 0.42. The effect of decompression on subsequent treat-
ment intensity may need to be further investigated. Excluding 
patients who underwent craniectomy from both groups did 
not alter the degree of divergence but did shift the start of 
divergence to 7 days rather than the first day. Decompressive 
craniectomy is a component of the PILOT score, so excluding 
craniectomy patients form the analysis changes the validity of 
the treatment intensity estimates of the scoring system used 
in this study.

Although we now have human clinical trial evidence from 
this study showing decreased treatment intensity as well as 
preclinical data demonstrating blood-brain barrier perme-
ability preservation and increased proinflammatory microglial 
apoptosis, the question remains whether clinical and preclini-
cal data can be linked by neuro/systemic cytokines and bio-
markers. The correlation of biomarker profiles with treatment 
intensity would further strengthen our clinical observations. 
In our current prospective Adult Phase IIA (ClinicalTrials.gov 
NCT01575470) and Pediatric Phase IIB (ClinicalTrials.gov 
NCT01851083) studies involving autologous bone marrow 
mononuclear cell therapy, CSF and peripheral blood are being 
collected for biomarker analysis of interleukin (IL)-1, IL-2, 
IL-4, IL-6, IL-8, and tumor necrosis factor-α in both treated 
and control patients.

Our clinical trial experience in pediatric and adult patients 
suggests that differences likely exist in the pathophysiology 
of TBI, and our clinical findings of treatment intensity in 
the pediatric population may not be identical in our adult 
population. For example, children are more likely to be coag-
ulopathic in the acute to subacute post injury period com-
pared to adults. Both adult and pediatric patients have been 
observed to have an initial decline in platelet numbers fol-
lowed by a rebound effect. This effect appears to be medi-
ated by circulating endothelial progenitor cells and may be 
modifiable by the treatment effect exerted by our clinical trial 
protocol (55). In adults, the rebound effect can sometimes 
be dramatic, with platelet levels exceeding three times the 
admission level.

Lastly, this retrospective cohort study design was not able 
to address long-term functional and neurocognitive outcomes 
between the treatment and control groups. In the treatment 
group, 40% of patients had an improvement from a Glasgow 
Outcome Score range of 1–3 to 4–5 between 30 and 180 days 
post injury. In the control groups, follow-up information was 
not always available, but at least 35% of patients from 2000 to 
2006 (four unknown) and at least one patient from 2006 to 
2008 (four unknown) were estimated to have the same out-
come improvement from 30 days to beyond 180 days. The 
pediatric phase IIB study has been designed to address this 
issue and includes a control group with robust randomiza-
tion and blinding to help detect functional and neurocognitive 
treatment effects.

CONCLUSIONS
IV autologous BMMNC therapy was associated with a reduc-
tion in treatment intensity required to manage ICP, associ-
ated severity of organ injury, and duration of ICP monitoring 
following severe TBI. This corroborates preclinical data that 
autologous BMMNC therapy attenuates the effects of inflam-
mation in the early post-TBI period.
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